
Metin I. Eren & Lauren E. Patten

To link to this article: https://doi.org/10.1080/01977261.2019.1598624

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 11 May 2019.

Submit your article to this journal

Article views: 216

View Crossmark data

Metin I. Eren and Lauren E. Patten

ABSTRACT
Robert J. Patten passed away suddenly on February 8, 2017. His influence on flintknapping, lithic technology, and archaeology, however, continues on. Here, we review Patten’s life and myriad contributions.

KEYWORDS
Flintknapping; lithic technology; experimental archaeology; Paleoindian; Folsom; Robert J. Patten

Life of Robert J. Patten

Patten was born on March 4th, 1944, in the Grand Valley of western Colorado, where his family had homesteaded in the late 1800s. As a boy, hearing his grandfather’s tales of seeing the Ute leader, Chipeta, migrating through the valley with her people, Patten became intrigued with the stone artifacts he found on his boyhood wanderings, and particularly with how they were made. Having only rudimentary information available, and no one to teach him, his early attempts at replication were necessarily awkward, and sometimes painful, but ultimately they led to a lifelong obsession with flintknapping (Patten, 2011) (Figure 1). Indeed, what makes Patten’s knapping talent so remarkable is that he was not taught, or even influenced, by any other knapper (Patten, 2011).

During his high school years, Patten worked summers as a rodman for the US Geological Survey and, deciding that getting paid to explore the landscape was exactly the career he wanted, he enrolled at Colorado State University to pursue the required Civil Engineering degree. In 1964, still in college, Patten was introduced to the Loveland Stone Age Fair, an annual gathering of artifact collectors that had begun in the 1930s (Figure 2). Thrilled at finding others who shared his passion for stone tools, Patten began demonstrating his now-accomplished flintknapping skills, first, in the parking lot. But when interested crowds began to gather, he was quickly invited to become an integral part of the fair, an association that was to last more than 50 years.

Upon graduating CSU in 1966, Patten was forced to put his Geological Survey aspirations on hold when his...
Army draft number came up low. To get a favorable assignment, he chose to enlist, a move that would allow him to utilize his new degree (Figure 1). He was to spend the next three years in the D.C. area, teaching cartographic drafting at Fort Belvoir, and later, creating computer simulations in Bethesda, MD. His off-duty time he spent exploring the Smithsonian, or fossil hunting along the Chesapeake.

Once discharged, Patten returned to his native Colorado to accept the long-awaited cartography field position with U.S.G.S., a job that took him on an annual circuit throughout the Rocky Mountain Region, from Montana to Texas. For Patten, it was the perfect assignment, allowing him autonomy, and the chance to constantly explore new landscapes. During brief stays in innumerable small towns, he haunted libraries and
museums, researching whatever he’d happened to discover during his off-hours, be it artifacts, antiques, or dinosaur fossils.

But inevitably, the field-mapping project was completed and Patten was assigned a position in the Survey’s Lakewood, CO office. In 1976, to temporarily escape the politics and confinement of his desk job, he requested a six-month detail at the Survey’s main office, in Reston, VA. In hopes of finding other knappers in the area, Bob contacted Dennis Stanford at the Smithsonian, whom he’d met some years earlier while visiting the Jones-Miller bison kill site. Dennis directed him to Scott Silsby, a local flintknapper, who invited him to a Christmas party hosted by the Northern VA chapter of the Virginia Archaeological Society. It was there that Bob met his future wife, Laurey, who was working on a graduate degree in archaeology at George Washington U, and moon-lighting weekends at the Natural History Museum, where Patten soon became a regular visitor. On their first outing together, an archaeological field survey followed by a fossil hunt along the Potomac, Bob demonstrated his interest by knapping her a fully fluted Clovis point – quite a statement, for a first date. The following summer, the two helped to organize a flintknapping get-together at the Long Branch Nature Center, in Arlington, VA, dubbing it a “knap-in” (because, after all, it was the ‘70’s), a designation that was quickly to become ubiquitous for all such gatherings (cf. Whittaker, 2004, pp. 64–65) (Figure 3). Among those attending were Stanford, Silsby, Errett Callahan, Bruce Bradley, Mike Johnson, Bob Humphrey, Jack Cresson, and many other notables, both archaeologists and knappers alike.

Bob and Laurey were married in the Spring of 1978, and returned to Colorado, where Bob was eventually put in charge of the U.S.G.S.’s Photo-lab contract. Each June, the two hosted the Colorado Front Range Flintknapping Workshop at their home in Lakewood, an event which was to continue for more than 35 years. During that time, and especially after his retirement from the Survey, in 1997, Patten wrote and illustrated three flintknapping/archeology books, with Laurey acting as editor, sounding board, and artistic contributor. In 2003, on a trip to Guatemala hosted by John Clark, of B.Y.U., Patten found inspiration for his fourth book, a detailed thesis on Mayan knapped stonework and its connection with mathematical and astronomical observations. The book was nearing publication when Bob Patten passed away, very suddenly, from an undiagnosed heart ailment on February 8th, 2017.

Archaeological and flintknapping contributions

Flintknapping, and understanding flintknapping

Patten had “fun” flintknapping (Patten, 1983, p. 156), could “make thinner bifaces than almost anyone else” (Whittaker, 2004, p. 182), and was prominent in the “development of the knapping community as it stands today” (Whittaker, 2004, p. 61). His body of flintknapping pieces extended across the Pleistocene and the Holocene, ranging from simple flakes to Mayan eccentrics, from trihedral points to Danish Daggers, and from Clovis to the Pre-Contact Period (Figures 4 and 5). But perhaps Patten is best known for his body of truly phenomenal late Paleoindian replicated pieces: Folsom, Eden, Scottsbluff, and Agate Basin, among others (Figure 6). Of these, Folsom was his favorite.

Patten explored, adopted, invented, and perfected a variety of flintknapping techniques from basics like direct percussion and pressure, to the use of forked sticks, the rocker punch, fluting anvils, and “flexibillets.” Among his myriad contributions to flintknapping, one that stands out in particular is his emphasis on the importance of support; i.e. how the core or biface is held, and how the hand holding the core or biface can influence the removed flake through the application of pressure (e.g. Patten, 1980a, p. 17, 2005, pp. 82–86, 2009).

In our experience Patten’s contributions to flintknapping were unique, because they often went far beyond

Figure 4. Examples of Patten’s flintknapping. Clockwise, starting at the bottom: Burlington chert biface hafted on a black walnut haft carved with an Anatolian design; quartzite Folsom point hafted onto a foreshaft; Clovis point on Georgetown chert; Danish Dagger; Cobra; Danish trihedral point.
the replication of physical objects. Patten was not satisfied with simply making stone tools and possessing an intuitive understanding of how to do it. As an analogy, all of us can use an iPhone and its software applications like Google Maps, Yahoo Weather, and Twitter. Patten, in contrast, wished to decipher the computer programming that runs those apps, to figure out how the liquid crystals of the iPhone functioned, and to understand how the iPhone itself was physically constructed. In other words, he wanted to explicitly and formally understand how and why flintknapping was possible. Toward this end, Patten’s two books, Old Tools-New Eyes (first edition: 1999; second edition: 2009) and Peoples of the Flute: A Study in Anthropolithic Forensics (2005), his collaborations with Tony Baker (between 1996 and 2009), and correspondence with Andrew Pelcin, helped shape much of his flintknapping theory.

Earlier iterations of this explicit and formal approach to flintknapping can be seen in Patten’s nascent work, likely the result of his engineering training. For example, Patten (1981) suggested that physics “rather than humanistics” be used for taxonomy, and that taxonomy should be applicable to problem-solving (echoing Dunnell, 1971). It is noteworthy that in that same article, Patten (1981, p. 12) preceded Thomas’ (1986) “flintknapper’s fundamental conceit” by five years, writing “If my experiments give a certain result by direct percussion with a baton then the Indian who got the same results must also have used direct percussion with a baton – a questionable result.”

An important concept to which Patten’s flintknapping research contributed greatly was that of equifinality, i.e. that multiple production methods can, and do, result in similar flaking products. While today, the equifinality of flaking products is widely recognized (e.g. Eren et al., 2016), and vital to our understanding of evolutionary convergence in stone tool technologies (e.g. Adler et al., 2014; O’Brien, Buchanan, & Eren, 2018; Will, Mackay, & Phillips, 2015), Patten’s work was an early precursor to this recognition and understanding. For instance, Patten (1978a) found from replication that “dense rock percussors can be made to perform the
same function as soft hammers by striking a yielding surface at the time of impact.” Or, when it came to Clovis fluting, Patten (1979b, p. 6) found that the particular technique was “difficult at best to identify.” This is not to say that Patten avoided speculation about prehistoric flintknapping techniques, but, unlike some of his contemporaries, was regularly candid about when his inferences or conclusions were speculative, and when they were not (e.g. Patten, 1980b). Nonetheless, Patten often saw “the thorny problem of equifinality” in flaking products from different knapping techniques, which “bothered” him, and “should bother a lot of other people” (Patten, 2011).

Process controls
One of Patten’s most important contributions to the study of prehistoric stone tools is his concept of “process controls,” which he describes as “systematic impositions placed on process tasks that act to reduce variation in the final product by augmenting inherent skill” (Patten, 2012, p. 25). The theme of process controls is clear in much of Patten’s earlier work (e.g. Patten, 1978b, 1978c, 1978d, 1980b), but it is not crystalized until Peoples of the Flute (2005) and his 2012 article in Lithic Technology. Given all the potential sources of variability that can contribute to stone tool variation (e.g. Lycett & von Cramon-Taubadel, 2015), process controls are meant to “level the playing field” so that a greater standardization of product can be achieved (Patten, 2012, p. 26). Process controls can be mechanical, action-oriented, or conceptual, and, in certain circumstances, may be difficult to identify in the archaeological record (Patten, 2012, p. 28). An example of simple process control is reducing the edge of a core to ensure that the correct platform thickness is struck, platform thickness being a key determinant of flake size. Thus, by reducing the core edge back to a specific location, a knapper can ensure that s/he will achieve the desired flake size. Process controls are culturally transmitted (sensu Mesoudi, 2011) for the purpose of reducing the required skill necessary for individuals to achieve a particular product. In this sense, the concept of process controls is different than both the “chaine opéraire” (Sellet, 1993) and the “reduction sequence” (Shott,
A more complicated set of process controls proposed by Patten is that necessary to flute Folsom points (Patten, 2002), and includes controls such as building a uniform preform crest and establishing a platform offset. When process controls are established for each stage of production, even stone tools seemingly difficult to produce, like Folsom points, can be made more manageable. Indeed, Patten’s proposed set of process controls for Folsom point production – inferred from congruent archaeological and experimental analyses – led him to suggest that “contrary to popular opinion, fluting a Folsom point does not appear to require any great degree of skill because process controls act to minimize difference in individual talent” (Patten, 2002, p. 308). This discovery was highly important because much ink was spilled by archaeologists on how to flute Folsom points, and knappers were creating elaborate contraptions involving pressure and levers. Patten, however, demonstrated with simple, specific flute removal process controls, all that was needed was soft hammer direct percussion (2008). In other words, there are many different ways to hold a football; but if one uses the process controls of placing the point of the ball in one’s palm, curving one’s wrist along the ball’s convexity, keeping one’s elbows tucked in, etc., even novices will have a better chance of avoiding a fumble.

The understanding and documentation of process controls not only can help archaeologists understand prehistoric technology, but also help them evaluate the authenticity of artifacts when considered in conjunction with a suite of other analyses (e.g. microwear, etc.). An example of this practice is the collaboration between Holen, Muniz, and Patten (2008) to determine whether or not the Angola Nebraska Fluted Point was a fake. Patten’s observations of the point’s flake scar patterning and morphology led him to suggest that it was indeed genuine, because “the Angola artifact retains indications of prior stages of manufacture that match process controls known to have been used by Clovis and other Paleoindian fluted point technologies” (Holen et al., 2008, p. 359).

Process controls have become an important concept in archaeologists’ understanding of lithic technological evolution, the learning of how to knap, and the cultural transmission of knapped artifacts (e.g. Lycett, 2011, 2013; Lycett & Eren, 2019; Lycett, Schillinger, Eren, von Cramon-Taubadel, & Mesoudi, 2016a; Lycett, Schillinger, Kempe, & Mesoudi, 2015; Lycett & von Cramon-Taubadel, 2015; Lycett, von Cramon-Taubadel, & Eren, 2016b; Schillinger, Mesoudi, & Lycett, 2014).

Flintknapping as test, model, and method validation

Patten’s tremendous knapping skill and experience allowed him to propose rich, illustrative descriptions of prehistoric artifacts (e.g. Patten, 1978b). But Patten understood that stone tool replication could also contribute to hypothesis-driven archaeology. As such, in the two years before his passing he co-authored a review paper (Eren et al., 2016) that evaluated how stone tool replication could be used (1) as a means of testing a question, hypothesis, or assumption about certain parameters of stone-tool technology; (2) as a model, in which information from empirically documented situations is used to generate predictions; and (3) as a means of validating analytical methods. In particular, Patten substantially helped distinguish between, and characterize, “flintknapping as test” versus “flintknapping as model,” likely because he had contributed towards both of these categories previously, although they had not yet been explicitly defined. For example, using flintknapping as a test, Patten contributed to the testing of whether overshot flakes are the most efficient means for thinning a biface (Eren, Patten, O’Brien, & Meltzer, 2013, 2014). Using flintknapping as a model, Patten examined a range of archaeological phenomena ranging from flakes to Folsom points (e.g. Hunzicker, 2008; Shott, Patten, & Hunzinger, 2007). Indeed, the early seeds of Patten’s use of flintknapping to create models for interpreting lithic products goes back to 1978 when he conceived of, and published, a simple and extremely useful way to think about pressure flaking. Characterizing the bounds of pressure flaking techniques as either a “push” or as a “pull” force, he then proposed “templates” of predicted results from each of these extremes (Patten, 1978e, 1979a).

Other, and continuing, contributions

It is difficult to summarize an entire career’s worth of scientific advances in a single article. We hope that the reader will peruse Patten’s published literature (listed in the references section), and explore his numerous contributions to our understanding of stone tool making, both past and present. An interview with him is also freely available online (Patten, 2011). However, we would be remiss if we did not mention a few of his other projects here. Beyond experimental archaeology and flintknapping, Patten contributed to prehistoric archaeology as well. With Dennis Stanford, Patten described and published the R-6 Cody site (Stanford & Patten, 1984). Patten also discovered the Antelope Springs Folsom site in South Park, Colorado (Patten, 2005, p. 2008) and
analyzed the Watts cache found near Fort Collins, Colorado (Patten, 2015). Additionally, he helped excavate Goodson Rockshelter in Oklahoma, and shaped the principle investigators’ understanding of the site (Eren, Meltzer, & Andrews, 2018).

Patten had a number of ongoing projects at the time of his passing. Among them include the description of a new cache from Ohio, an analysis of North American mounds, and a book about Mayan knapped stonework and its connection with mathematical and astronomical observations. We provide the latter two items in the Supplementary Online Materials.

Finally, Patten’s artifact collection was donated to Kent State University as part of the Robert J. and Lauren E. Patten Endowment, and is currently in the process of being systematically published (e.g. Eren, Bebber, et al., 2018; Norris et al., 2019).

Memories, thoughts, and legacy

Patten left a global legacy not only on our understanding of flintknapping, lithic technology, and archaeology (Figure 7), but also made lasting impressions and memories upon the practitioners of these subjects, students and professionals alike. He won numerous awards for his work, including the 2004 Society for American Archaeology Crabtree Award (Figure 8), but perhaps the greatest tribute comes from those he touched. Many tributes, comments, and memories can be found online on websites and forums like Facebook and PaleoPlanet, and below are thoughts from some of his friends, colleagues, and students (in alphabetical order).

Bob was a huge influence on me, as he was with hundreds – perhaps thousands – of other knappers, students, and archeologists. Around 1980, I stumbled across an announcement that the Denver Museum of Natural History would have a knapping demonstration. I had never seen a flintknapper, but had heard rumors that they existed. I had to learn more about this magic and was waiting at the front door when it opened. I located the flintknapper, who of course turned out to be Bob, and watched him all day until closing time, filled with a thousand questions, but so awe-struck I could barely breathe. Bob, as always, was patient, kind, and full of information, all of which was over my head. As everyone knows, Bob was an innovator, always trying new techniques. Some worked, some didn’t. Without a doubt, my favorite memory of Bob demonstrating a new technique happened at the one-and-only Folsom, NM knap-in. Bob was doing something radical: he laid a Folsom preform, fluting nipple prepared, in his open palm with nothing but gravity to hold it in place. No fingers wrapped around it, not even a piece of leather on top. Then he’d strike the fluting platform with some kind of big percussor. Amazingly, the preform would often bounce a little and the channel flake would detach. One time, though, Bob gave the preform a good whack and away it went. It flew about 30’ and hit a man in the back of the head. Bob, calm as ever, said, “Well, that’s never happened before.” Another vivid memory happened about five years ago. We were visiting a mutual friend who owned a large collection of Paleoindian points. They were displayed in beautiful cases laid across a dining room table. Bob and I were on opposite sides of the table looking at a frame of Folsom specimens. One in particular caught my eye – it was subtly but distinctly different from the rest. As I leaned over for a closer look, Bob tapped on the glass to point out that same Folsom and looked up at me. Unfortunately, we were interrupted and didn’t get to finish that conversation, and I never heard Bob’s thoughts about that point. If I ever have the chance to talk to Bob again, that will be the first thing I’ll ask him. And then I’ll have to thank him for being the great person he was – the innovator, the questioner, the craftsman, the mentor. Bob will be sorely missed. (Woody Blackwell, Personal Communication)

Bob was a great inspiration to me, both as an individual and as a knapper. He generously shared his knowledge, both within the professional archaeological and amateur communities, as attested by his wide range of publications. I greatly appreciated his passion for unravelling

Figure 7. Patten regularly provided public demonstrations, and was featured on television documentaries. Here shown on the PBS NOVA documentary Making North America – Human (2015).
the mysteries of the human experience through examining the minute details of flaked stone technology. I especially remember a fascinating conversation where Bob explained to me his insights into the possible mathematically symbolic details of Mayan eccentrics. This encouraged me to continue delving into potential symbolism expressed in that durable substance; flaked stone. I will always admire Bob’s relentless quest to explore “alternative” methods of flaking stone and not be confined by orthodoxy (e.g. the forked stick support). I also enjoyed Bob’s ability to engage in constructive debate with professionalism and respect. While our paths didn’t cross frequently, it was always a delight to meet Bob and Laurey, whether at the SAAs, at an archaeological project, a knap-in or in their backyard. (Bruce Bradley, Personal Communication)

I first became aware of Bob Patten through his “leading edge” writings on Paleoindian lithic technology in “Flintknapper’s Exchange,” a newsletter edited by Errett Callahan and Ruthann Knudson, published in the 1970s. Bob’s contributions to this seminal, quarterly newsletter were always inspirational and informative to a “neophyte” rock breaker like myself. Bob was always chasing flaking techniques, holding positions and diverse methods to replicate the past. In that he was exemplary. Bob was the ultimate “gentleman”: courteous, soft spoken, always generous with his time and willingness to help struggling “learners of the craft,” or expound on his latest techniques and discoveries in lithic technology. I am a better person, lithic technologist and archaeologist for having known Bob. Needless to say his passing has left a gaping void in New World lithic studies and archaeology. (Jack Cresson, Personal Communication)

I first met Bob more than twenty years ago through our mutual friend Tony Baker. Bob and Tony were kindred...
Bob was a very good friend. I am inspired by his love of learning and deep curiosity. For many years I attended the Knap-In that he held in early June. Bob provided shelter with tarps spread over the grass in his back yard to catch the flying chips of stone as beginners and experts fashioned stone tools. His wife Laurey always cooked a delicious meal for the knappers to devour at their mid-day break. Every year Bob introduced new knapping techniques in search of a reliable way to replicate the fluting found in Clovis points. Everyone freely shared their knowledge and learned from each other. This gathering that Bob created was a gift to all of us who knew him. It was my great good fortune to know this extraordinary man. (E. James Dixon, Personal Communication)

I am so grateful that I had the opportunity to meet Bob and learn from him. I first met Bob maybe 10+ years ago at the Loveland Stone-age Fair where he was showing how to reduce a chunk of hard quartzsite with a hammer stone. Maybe about 8 years ago, I met up with him again and told him I was a closet knapper and with that he invited me over to the Front Range knap-in. I love the fact that he focused on small and subtle nuances in knapping that make a big difference in your success. Bob was ever the gentleman and always had time to show you his suggestions for how to manage a particular angle or support for getting the right flake to release. If nothing else, he always wanted to be sure you were learning and he was a man that loved to share, which was one of his finer attributes. (Tim Evans, Personal Communication)

Bob made my Master's Thesis possible by providing 25 replica Folsom points for use in an experimental archaeology project firing atlatl darts into sides of beef to study Folsom durability, impact damage, and changing morphology through multiple rounds of damage and rejuvenation. In addition to making the points, Bob met with me 5 times to repair and resharpen the damaged points. (David Hunzicker, Personal Communication)

Without question, Bob, a non-degreed experimental archeologist, was one of the two most influential people in my professional career. Bob was a maverick. He was always experimenting with new ideas. The upshot was not so much that Bob taught me new lithic technology techniques but that he taught me more cognitive ways to think about archeology. He taught me to never be satisfied with the prevailing models, which are often from a modern perspective; to always push the envelope and be willing to look at things without wearing blinders; and when presented with an apparently intractable problem, to seek ways to bridge the gap. Bob taught us how to think freely. (Michael Johnson, Personal Communication)

Each of my experiences with Bob were memorably positive and productive. I first met him at a Folsom flintknapping workshop in Austin around 1999. When he found out that I was interested in Clovis caches, he was quick to point me toward the Watts Cache. Though he was first to “discover” it by identifying it as Clovis in the collections of the Ft. Collins Museum, he was never proprietary about it. On the contrary, he was eager for me to examine it and then to promote my work. What’s more, though I was a young punk graduate student, he never treated me that way. He engaged with me as if I was a worthy scholar, which made me feel like I was becoming one. (David Kilby, Personal Communication)

Bob came to the St. Louis area to attend the Midwest Flintknapper’s Convention (Now, the Devil’s Hole Knap-in) around 1984 or 1985. We decided to go to the Kroger store parking lot in High Ridge Mo. to get some Burlington chert. It was about 78 degrees but the humidity was about 90% that day. The best chert was at the bottom of the hill from the parking lot but there was a concrete-lined drainage ditch leading right to the best chert. After Bob and I quarried for about an hour, it was time to carry our treasure to the truck. That drainage ditch was only about 200 feet long but it took us about 3 rests to make it to the top, on each trip, and we made about 3 or 4 trips. We were both suckin’ air like a team of exhausted Missouri mules and on the third trip we were so exhausted that we both thought we were...
M. I. EREN AND L. E. PATTEN

5. Conclusion

Robert J. Patten possessed a special kind of *sight*. It was not just that he could look at contour lines on a map and see a landscape of crests, drainages, and outcrops, literally in three dimensions. Or that he had trained himself to focus so closely on anomalies that he’d been known to spot a chipped stone artifact in a roadcut, at 40mph. He was a visionary, who saw connections, relationships, and inter-related systems in what others shrugged off as the mundane. And all that he saw, he sought to analyze, to understand, to explain – and, once understood, to disseminate – freely, without seeking credit or self-aggrandizement. Many of his writings might have qualified him for a graduate degree in archaeology, yet he purposely did not seek one because he had no wish to be bounded by a single discipline. His interests were in everything and, as he saw it, his background in engineering, geology, cartography, and flintknapping allowed him to provide his own, unique, unbiased contributions to archaeology in a way few others were, or are, equipped to do (Figure 9).

Acknowledgements

M.I.E. would like to gratefully acknowledge L.P. and the Robert J. and Lauren E. Patten Endowment, the latter supporting
student archaeological research at Kent State in perpetuity. M.I.E. and L.P. would also like to thank all of those who shared thoughts and memories of Bob, and allowed us to reproduce them in this article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Metin I. Eren is an Assistant Professor of Anthropology and co-director of the Kent State University Experimental Archaeology Lab.

Lauren E. Patten is a writer, archaeology editor, and owner of Stone Dagger Publications, Lakewood, CO.

References

Other papers and outputs by Robert. J. Patten

Patten, R.J. 20170. [Video] Knapping Instruction. Filmed by Colorado State University, CO., Department of Anthropology.
Patten, R.J. 1990. [Video] Search for the First Americans. Clovis replication filmed by BBC Horizons, shown by NOVA.
Patten, R.J. 1999. [Video] Nickels’ Worth. Filmed by Denver’s Channel 9 TV.
